NAME	ROLL NO	

	INDIAN SCHOOL MUSCAT MIDDLE SECTION FIRST PERIODIC TEST 2022 – 23	NABET	
	MATHEMATICS (SET-B)	Code: MZM01	
CLASS-VIII		Time Allotted: 40 Minutes	
22.05.2022		Max. Marks: 20	

General Instructions.

- 1. The question paper comprises of **three sections A, B**, and **C**. You have to attempt all the sections.
- 2. All the questions are compulsory.
- 3.All the answers should be written in the answer sheet provided.

Q.NO1	SECTION A - FILL IN THE BLANKS ('1' MARK EACH) - TOTAL - 04 MARKS	Marks
(a)	There are <u>UNCOUNTABLE</u> rational numbers between $\frac{-3}{8}$ and $\frac{3}{4}$.	1
(b)	The sum of the interior angles of a polygon with 12 sides = $(12 - 2) \times 180^{\circ} = 1800^{\circ}$	1/2 + 1/2
(c)	Measure of each exterior angle of 20-sided regular polygon = $360^{\circ} \div 20 = \underline{18^{\circ}}$	1/2 + 1/2
(d)	The product of $\frac{-5}{11}$ and its multiplicative inverse is $\underline{1}$	1/2 + 1/2

Q.NO2	SECTION B - ('2' MARKS EACH) - TOTAL - 10 MARKS	Marks
(a)	Find the number of sides for a regular polygon with each interior angle 135° . Measure of each exterior angle = 180° – 135° = 45° Number of sides = 360° ÷ 45° = 8	1+1
(b)	How many diagonals are there for a polygon with 11 sides? Number of diagonals = 11(11 - 3) / 2 = (11 x 8) /2 = 11x4 = 44	1/2 + 1/2 +1/2 + 1/2
(c)	Find the additive inverse of $\left(\frac{-7}{15} \times \frac{5}{14}\right)$. $\left(\frac{-7}{15} \times \frac{5}{14}\right) = \left(\frac{-1}{3} \times \frac{1}{2}\right) = \frac{-1}{6}$ ADDITIVE INVERSE OF $\frac{-1}{6}$ IS $\frac{1}{6}$	1+1
(d)	The product of two rational numbers is $\frac{-9}{10}$. If one of the rational numbers is $\left(\frac{2}{5} \times \frac{3}{4}\right)$ then find the other rational number.	

Page 1 of 2 Code: MZM01

	Ans: $\frac{-9}{10} \div \left(\frac{2}{5} \times \frac{3}{4}\right) = \frac{-9}{10} \div \frac{3}{10} = -3$	1 +½+
(e)	Find the value of 'x'. Ans: $\frac{1}{1} = 180^{\circ} - 90^{\circ} = 90^{\circ}$ (linear pair) $90^{\circ} + 90^{\circ} + 40^{\circ} + 60^{\circ} + x = 360^{\circ}$ (Sum of the exterior angles of a polygon is 360°) $280^{\circ} + x = 360^{\circ}$ $x = 360^{\circ} - 280^{\circ} = 80^{\circ}$	½ + ½+ ½ + ½

Q.NO	SECTION - C ('3' MARKS EACH) - TOTAL - 06 MARKS	Marks
3.	The angles of a pentagon are in the ratio $2:3:5:7:10$. Find the largest and the smallest angles of the pentagon. of the interior angles of a pentagon = $(5-2) \times 180^{\circ} = 540^{\circ}$ $2x + 3x + 5x + 7x + 10x = 540^{\circ}$ $27x = 540^{\circ}$ $X = 540^{\circ} \div 27 = 20^{\circ}$ Largest angle = $10x = 10 \times 20^{\circ} = 200^{\circ}$ The smallest angle = $2x = 2 \times 20^{\circ} = 40^{\circ}$	1+1+ ½+½
4.	Simplify $\frac{-3}{7} \times \frac{5}{12} + \frac{11}{12} \times \frac{-3}{7} - \frac{-3}{7}$ using suitable properties. $\frac{-3}{7} \times (\frac{5}{12} + \frac{11}{12} - 1)$ $= \frac{-3}{7} \times (\frac{5}{12} + \frac{11}{12} - \frac{12}{12})$ $= \frac{-3}{7} \times \frac{4}{12}$ $= \frac{-1}{7}$	1 +1 +1

End of Answer Key.

Page 2 of 2 Code: MZM01