	INDIAN SCHOOL MUSCAT MIDDLE SECTION	
	FIRST PERIODIC TEST 2022 - 23	

General Instructions.

1. The question paper comprises of three sections A, B, and C. You have to attempt all the sections. 2. All the questions are compulsory.
3.All the answers should be written in the answer sheet provided.

Q.NO1	SECTION A - FILL IN THE BLANKS ('1' MARK EACH) - TOTAL - 04 MARKS	Marks
(a)	There are UNCOUNTABLE rational numbers between $\frac{-3}{8}$ and $\frac{3}{4}$.	1
(b)	The sum of the interior angles of a polygon with 12 sides =(12-2) $\times 180^{\circ}=\underline{1800^{\circ}}$	$1 / 2+1 / 2$
(c)	Measure of each exterior angle of 20-sided regular polygon $=\mathbf{3 6 0}{ }^{\circ} \mathbf{2 0}=\underline{18^{\circ}}$	$1 / 2+1 / 2$
(d)	The product of $\frac{-5}{11}$ and its multiplicative inverse is $\mathbf{1}$	$1 / 2+1 / 2$

Q.NO2	SECTION B - ('2' MARKS EACH) - TOTAL - 10 MARKS	Marks
(a)	Find the number of sides for a regular polygon with each interior angle 135°. Measure of each exterior angle $=180^{\circ}-135^{\circ}=45^{\circ}$ Number of sides $=360^{\circ} \div 45^{\circ}=8$	$1+1$
(b)	How many diagonals are there for a polygon with 11 sides? Number of diagonals $=11(11-3) / 2=(11 \times 8) / 2=11 \times 4=44$	$\begin{gathered} 1 / 2+1 / 2 \\ +1 / 2+ \\ 1 / 2 \end{gathered}$
(c)	Find the additive inverse of $\left(\frac{-7}{15} \times \frac{5}{14}\right)$. $\left(\frac{-7}{15} \times \frac{5}{14}\right)=\left(\frac{-1}{3} \times \frac{1}{2}\right)=\frac{-1}{6}$ ADDITIVE INVERSE OF $\frac{-1}{6}$ IS $\frac{1}{6}$	$1+1$
(d)	The product of two rational numbers is $\frac{-9}{10}$. If one of the rational numbers is $\left(\frac{2}{5} \times \frac{3}{4}\right)$ then find the other rational number.	

	Ans: $\frac{-9}{10} \div\left(\frac{2}{5} \times \frac{3}{4}\right)=\frac{-9}{10} \div \frac{3}{10}=-3$	$\begin{gathered} 1+1 / 2+ \\ 1 / 2 \\ \hline \end{gathered}$
(e)	Find the value of ' x '. Ans: $\underline{/ 1}=180^{\circ}-90^{\circ}=90^{\circ}$ (linear pair) $\begin{aligned} & 90^{\circ}+90^{\circ}+40^{\circ}+60^{\circ}+x=360^{\circ} \text { (Sum of the exterior angles of a polygon is } 360^{\circ} \text {) } \\ & 280^{\circ}+x=360^{\circ} \\ & X=360^{\circ}-280^{\circ}=80^{\circ} \end{aligned}$	$\begin{gathered} 1 / 2+ \\ 1 / 2+1 / 2 \\ +1 / 2 \end{gathered}$

Q.NO	SECTION - C ('3' MARKS EACH) - TOTAL - 06 MARKS	Marks
3.	The angles of a pentagon are in the ratio $2: 3: 5: 7: 10$. Find the largest and the smallest angles of the pentagon. of the interior angles of a pentagon $=(5-2) \times 180^{\circ}=540^{\circ}$ $\begin{aligned} & 2 x+3 x+5 x+7 x+10 x=540^{\circ} \\ & 27 x=540^{\circ} \\ & X=540^{\circ} \div 27=20^{\circ} \end{aligned}$ Largest angle $=10 \mathrm{x}=10 \times 20^{\circ}=200^{\circ}$ The smallest angle $=2 x=2 \times 20^{\circ}=40^{\circ}$	$\begin{aligned} & 1+1+ \\ & 1 / 2+1 / 2 \end{aligned}$
4.	Simplify $\frac{-3}{7} \times \frac{5}{12}+\frac{11}{12} \times \frac{-3}{7}-\frac{-3}{7}$ using suitable properties. $\begin{aligned} & \frac{-3}{7} \times\left(\frac{5}{12}+\frac{11}{12}-1\right) \\ = & \frac{-3}{7} \times\left(\frac{5}{12}+\frac{11}{12}-\frac{12}{12}\right) \\ = & \frac{-3}{7} \times \frac{4}{12} \\ = & \frac{-1}{7} \end{aligned}$	$\begin{gathered} 1+1 \\ +1 \end{gathered}$

End of Answer Key.

